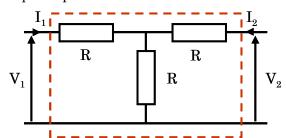
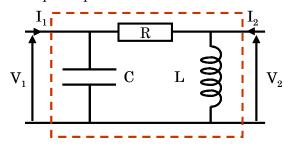
Nom:	Prénom:	Groupe	:	
ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA-ANTIPOLIS				
Université Nice Sophia Antipolis	Cycle Initial Polytech Première Année Année scolaire 2013/2014		Note / 20	
École d'ingénieurs POLYTECH NICE-SOPHIA	DS électronique analogique No3		7 20	

Mardi 6 Mai 2014 CORRECTION Durée: 1h30

- □ Cours et documents non autorisés.
- □ Calculatrice de type collège autorisée
- □ Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous devez:
 - indiquer votre nom et votre prénom.
 - éteindre votre téléphone portable (- 1 point par sonnerie).

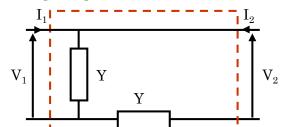

RAPPELS:

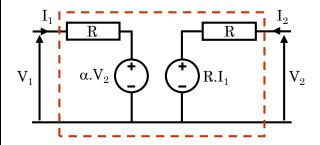
Impédance d'une capacité $C: 1/(jC\omega)$ $[\Omega]$	Impédance d'une bobine $L: jL\omega$ [Ω]
Filtre passe bas : $G(\omega) = \frac{H}{1 + j\omega RC} = \frac{H}{1 + j\frac{\omega}{\omega_0}}$	Filtre passe haut : $G(\omega) = \frac{H}{1 - j\frac{1}{\omega RC}} = \frac{H}{1 - j\frac{\omega_0}{\omega}}$
	$ \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} \qquad \begin{cases} V_1 = Z_{11}.I_1 + Z_{12}.I_2 \\ V_2 = Z_{21}.I_1 + Z_{22}.I_2 \end{cases} $
	$ \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \qquad \begin{cases} I_1 = Y_{11}.V_1 + Y_{12}.V_2 \\ I_2 = Y_{21}.V_1 + Y_{22}.V_2 \end{cases} $
Gain en tension en représentation impédance*:	$\mathbf{A}_{v} = \frac{\mathbf{V}_{2}}{\mathbf{V}_{1}} = \frac{\mathbf{Z}_{21}}{\mathbf{Z}_{11} + \frac{\mathbf{Z}_{11}.\mathbf{Z}_{22} - \mathbf{Z}_{12}.\mathbf{Z}_{21}}{\mathbf{X}}}$


^{*} X représente l'impédance branchée en sortie du quadripôle.

EXERCICE I : Quadripôles (6 pts)

- I.1. Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :
- (0.25 pt) $Z_{11} = 2R$


- (0.25 pt) $Z_{12} = R$
- (0.25 pt) $Z_{21} = R$
- (0.25 pt) $Z_{22} = 2R$
- 1 I.2. Par la méthode de votre choix, déterminer les paramètres admittances de ce quadripôle :
- **(0.25 pt)** $Y_{11} = jC\omega + \frac{1}{R}$


- (0.25 pt) $Y_{12} = -\frac{1}{R}$
- (0.25 pt) $Y_{21} = -\frac{1}{R}$
- (0.25 pt) $Y_{22} = \frac{1}{jL\omega} + \frac{1}{R}$
- I.3. Par la méthode de votre choix, déterminer les paramètres admittances de ce quadripôle :

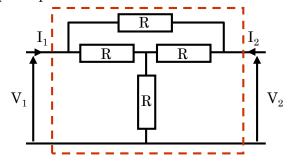
1

(0.25 pt) $Y_{11} = 2Y$

- **(0.25 pt)** $Y_{12} = -Y$
- (0.25 pt) $Y_{21} = -Y$
- **(0.25 pt)** $Y_{22} = Y$
- **I.4.** Par la méthode de votre choix, déterminer les paramètres impédances de ce quadripôle :
- (0.25 pt) $Z_{11} = (1 + \alpha)R$

- (0.25 pt) $Z_{12} = \alpha R$
- (0.25 pt) $Z_{21} = R$
- (0.25 pt) $Z_{22} = R$

I.5. Par la méthode de votre choix, déterminer 2 des 4 paramètres impédances de ce quadripôle :


(0.5 pt)
$$Z_{11} = \frac{10}{3}R$$

R R

(0.5 pt) $Z_{12} = \frac{2}{3}R$

méthode de votre choix, déterminer les paramètres impédances de ce (0.25 pt) $Z_{11} = \frac{5}{3}R$ quadrinôle: quadripôle:

(0.25 pt)
$$Z_{11} = \frac{5}{3} F$$

(0.25 pt)
$$Z_{12} = \frac{4}{3}R$$

(0.25 pt)
$$Z_{21} = \frac{4}{3}R$$

(0.25 pt)
$$Z_{22} = \frac{5}{3}R$$

EXERCICE II : Amplificateur en émetteur commun (12 pts)

Figure II.1

Soit le circuit de la figure II.1. Le transistor a un gain en courant β, une tension de saturation V_{CEsat} ainsi qu'une résistance R_{S} et une tension V_{S} pour sa diode base-émetteur. h_{oe} sera négligée.

1

II.1. Etude en statique du montage

0.25

II.1.1. Dans quel régime se trouve le transistor pour pouvoir amplifier le signal E_G(t)?

- A Bloqué
- B X Linéaire
- C Saturé

0.25

II.1.2. Comment doit-on considérer les capacités en régime statique ?

- A Comme des courts-circuits
- B X Comme des circuits ouverts
- C Comme des fils
- D Comme des résistances

0.5

II.1.3. Donner l'expression du courant I_{B0} en fonction de V_{DD} , R_1 , R_2 , R_8 , V_8 , R_E et β . Vous pourrez vous aider d'un générateur de Thévenin équivalent si vous voulez.

$$I_{B0} = \frac{E_{th} - V_S}{R_{th} + R_S + (1 + \beta)R_E} \quad \text{avec} \quad E_{th} = \frac{R_2}{R_1 + R_2} V_{DD} \quad \text{et} \quad R_{th} = \frac{R_1.R_2}{R_1 + R_2}$$

II.1.4. Donner l'expression du courant Ico.

0.25

 $I_{C0} = \beta . I_{B0}$

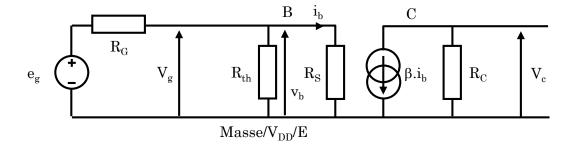
II.1.4. Donner l'expression de la tension V_{CEO} en fonction de V_{DD}, R_C, R_E, I_B et β.

0.5

$$V_{CE0} = V_{DD} - \beta R_C I_{BO} - (1 + \beta) R_E I_{BO}$$

II.1.5. Comment doit être VCE par rapport à VCEsat?

0.25


- $A \quad V_{CE} < V_{CEsat}$
- B $X V_{CE} > V_{CEsat}$
- $C V_{CE} = V_{CEsat}$
- $D V_{CE} > V_{DD}$

II.2. Etude en régime dynamique du montage

Les capacités C_1 et C_E seront considérées comme des courts-circuits. Pour simplifier les expressions, on posera R_e = R_1 // R_2 // R_S

1

II.2.1 Donner le schéma en régime petit signal du schéma de la figure (II.1). Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b , et β . i_b .

II.2.2 Donner l'expression du gain en tension.

$$A_{V1} = \frac{v_c}{v_b} = \frac{-\beta.R_C.i_b}{R_S.i_b} = -\beta \frac{R_C}{R_S}$$

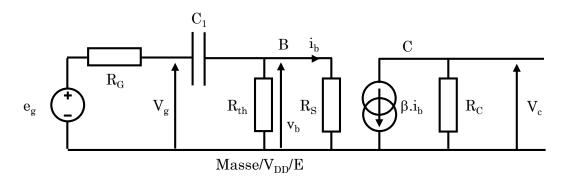
0.5 II.2.3 Donner l'expression du gain composite en tension.

$$A_{VG1} = \frac{v_c}{e_g} = \frac{v_c}{v_b} \frac{v_b}{e_g} = -\beta \frac{R_C}{R_S} \frac{R_e}{R_G + R_e}$$

II.3. Etude en régime dynamique du montage avec la capacité C1

La capacité C_E est considérée comme un court-circuit. Pour simplifier les expressions, on posera R_e = R_1 // R_2 // R_S

II.3.1. Quel est le rôle de la capacité C₁ (entourer la bonne réponse) ?


0.25

- A Augmenter le gain en alternatif en court-circuitant la résistance R2
- B X Empêcher que la partie statique de E_G modifie le point de polarisation du transistor.
- C Eviter l'échauffement du transistor
- D Court-circuiter la base pour laisser passer la partie alternative de EG
- E Empêcher que la partie statique de V_{DD} modifie le point de polarisation du transistor.

II.3.2. Pour le circuit, la capacité C1 représente un filtre :

0.25

- A Passe Bas
- B X Passe Haut
- C Passe Calou
- 1I.3.3 Donner le schéma en régime petit signal du circuit de la figure (II.1). Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b, et β.i_b.

II.3.4. Déterminer l'expression du gain en tension

$$A_{VC1} = \frac{v_c}{v_g} = \frac{v_c}{v_b} \frac{v_b}{v_g} = -\beta \frac{R_C}{R_S} \frac{1}{1 - j \frac{1}{jC_1 R_0 \omega}}$$

0,5

0,5

II.3.5. Identifier alors l'expression de la fréquence du filtre, Fc1 :

$$F_{C1} = \frac{1}{2\pi C_1 R_e}$$

0,5

II.3.6. On souhaite amplifier un signal audio dont les fréquences sont comprises entre 20 Hz et 20 kHz. Représenter l'allure du gain Avc_1 (question II.3.4.) sur la figure (II.2). Il faudra aussi positionner le gain Av_1 (question II.2.2.)

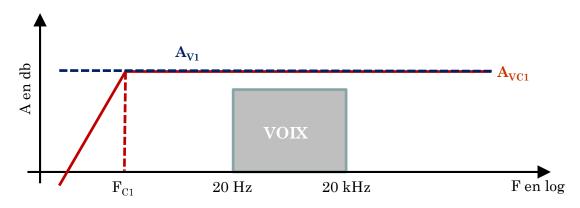


Figure II.2

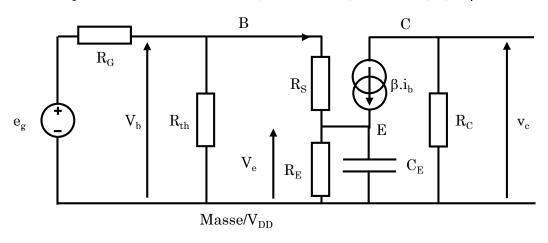
II.4. Etude en régime dynamique du montage avec la capacité CE

La capacité C₁ est considérée comme un court-circuit.

II.4.1. Quel est le rôle de la capacité C_E ?

0.25

- A) Augmenter la valeur de la résistance RE.
- B) X Empêcher la tension V_E de varier et ainsi augmenter la valeur du gain $A_{V1} = v_0/v_b$.
- C) Stabiliser thermiquement le transistor.
- D) Augmenter l'effet de la capacité C₁


II.4.2. Pour V_G et E_G, la capacité C_E forme un filtre?

0.25

- A) Passe haut.
- B) X Passe bas.
- C) Passe Us Duriusculus

II.4.3. Donner le schéma en régime petit signal du circuit de la figure (II.1). Il faudra indiquer où se trouvent : la base, le collecteur, l'émetteur, i_b, et β.i_b.

0.5

6

1

II.4.4. Si on suppose que la capacité C_E est un circuit ouvert (donc en basse fréquence), donner l'expression du gain en tension.

$$A_{V2} = \frac{v_c}{v_b} = \frac{-\beta.R_C}{R_S + (1+\beta)R_E}$$

0.5

II.4.5. Comparer les gains A_{V1} (question II.2.2.) et A_{V2} (question II.4.4).

A)
$$A_{V1} < A_{V2}$$

B)
$$X A_{V1} > A_{V2}$$

C)
$$A_{V1} = A_{V2}$$

1

1

II.4.6. En tenant compte de C_E, quelle est l'expression du gain en tension. Attention, ce gain ne correspond ni à un passe bas, ni à un passe haut comme défini en rappel.

$$A_{VCE_2} = \frac{v_c}{v_b} = \frac{-\beta.R_C.i_b}{R_S.i_b + R_E /\!\!/ C_E.(1+\beta)\!\!i_b} = \frac{-\beta.R_C}{R_S + (1+\beta)} \frac{R_E \frac{1}{jC_{E}\omega}}{R_E + \frac{1}{jC_{E}\omega}} = \frac{-\beta.R_C}{R_S + \frac{(1+\beta)R_E}{1+jC_ER_E\omega}}$$

0.25

II.4.7. Vers quelle expression tend le gain du montage lorsque la fréquence tend vers 0.

$$A_{\text{VCE}}_{-2}|_{F\to 0} = -\beta \frac{R_{\text{C}}}{R_{\text{S}} + (1+\beta)R_{\text{E}}}$$

0.25

II.4.8. Vers quelle expression tend le gain du montage lorsque la fréquence tend vers l'infini.

$$A_{VCE_{-2}}\big|_{F\to\infty} = -\beta \frac{R_C}{R_S}$$

T----

II.4.9. On souhaite amplifier un signal audio dont les fréquences sont comprises entre 20 Hz et 20 kHz. Représenter l'allure du gain Avce_2 (question II.4.6.) sur la figure (II.3).

Il faudra aussi positionner les gains Av₂ (II.4.4) et Av₁ (question II.2.2.)

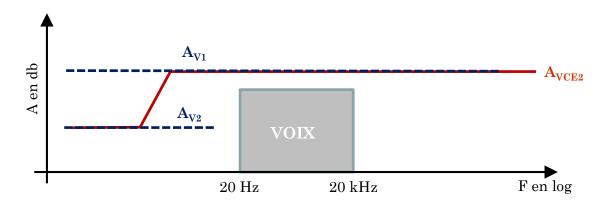


Figure II.3

EXERCICE III: Amplificateur et quadripôle (2 pts)

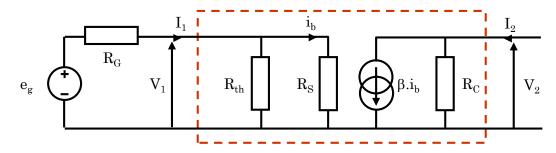


Figure III.1

Soit, à la figure (III.1), le schéma petit signal d'un amplificateur

III.1. Par la méthode de votre choix, déterminer les paramètres impédances du quadripôle amplificateur.

$$Z_{11} = R_{th} // R_S$$

$$Z_{12} = 0$$

$$Z_{21} = -\beta.R_{C}.\frac{R_{th}}{R_{th} + R_{S}}$$

$$Z_{22} = R_C$$

1 III.2. En utilisant les rappels, donner l'expression du gain en tension :

$$A_{V} = \frac{V_{2}}{V_{1}} = \frac{Z_{21}}{Z_{11}} = -\beta.R_{C}. \frac{R_{th}}{R_{th} + R_{S}} \frac{R_{th} + R_{S}}{R_{th}.R_{S}} = -\beta. \frac{R_{C}}{R_{S}}$$

EXERCICE IV : Amplificateur et quadripôle (2 pts bonus)

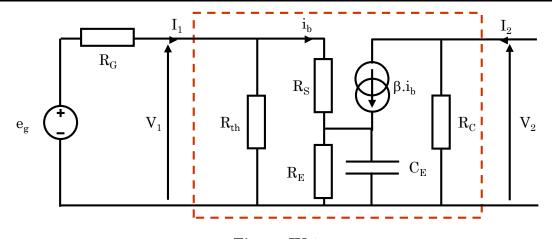


Figure IV.1

Soit, à la figure (IV.1), le schéma petit signal d'un amplificateur

IV.1. Par la méthode de votre choix, déterminer les paramètres impédances du quadripôle amplificateur. <u>Pour simplifier, vous pouvez utiliser la notation //</u>

1 bonus

$$Z_{11} = R_{th} / [R_S + (1 + \beta)C_E / R_E]$$

$$Z_{12} = 0$$

$$Z_{21} = -\beta.R_{C}. \left[\frac{R_{th}}{R_{th} + R_{S} + (1+\beta)C_{E} /\!\!/ R_{E}} \right] \qquad Z_{22} = R_{C}$$

IV.2. En utilisant les rappels, donner l'expression du gain en tension :

$$A_{V} = \frac{V_{2}}{V_{1}} = \frac{Z_{21}}{Z_{11}} = -\beta.R_{C}.\left[\frac{R_{th}}{R_{th} + R_{S} + (1+\beta)C_{E} /\!\!/ R_{E}}\right] \cdot \frac{R_{th} + R_{S} + (1+\beta)C_{E} /\!\!/ R_{E}}{R_{th}.[R_{S} + (1+\beta)C_{E} /\!\!/ R_{E}]}$$

$${\rm A}_{v} = \frac{{\rm V}_{2}}{{\rm V}_{1}} = \frac{{\rm Z}_{21}}{{\rm Z}_{11}} = -\beta. \frac{{\rm R}_{C}}{{\rm R}_{S} + \left(1 + \beta\right)\!{\rm C}_{E} /\!\!/ {\rm R}_{E}}$$